65 research outputs found

    Crop biophysical parameter retrieval from Sentinel-1 SAR data with a multi-target inversion of Water Cloud Model

    Get PDF
    Estimation of bio-and geophysical parameters from Earth observation (EO) data is essential for developing applications on crop growth monitoring. High spatio-temporal resolution and wide spatial coverage provided by EO satellite data are key inputs for operational crop monitoring. In Synthetic Aperture Radar (SAR) applications, a semi-empirical model (viz., Water Cloud Model (WCM)) is often used to estimate vegetation descriptors individually. However, a simultaneous estimation of these vegetation descriptors would be logical given their inherent correlation, which is seldom preserved in the estimation of individual descriptors by separate inversion models. This functional relationship between biophysical parameters is essential for crop yield models, given that their variations often follow different distribution throughout crop development stages. However, estimating individual parameters with independent inversion models presume a simple relationship (potentially linear) between the biophysical parameters. Alternatively, a multi-target inversion approach would be more effective for this aspect of model inversion compared to an individual estimation approach. In the present research, the multi-output support vector regression (MSVR) technique is used for inversion of the WCM from C-band dual-pol Sentinel-1 SAR data. Plant Area Index (PAI, m2 m−2) and wet biomass (W, kg m−2) are used as the vegetation descriptors in the WCM. The performance of the inversion approach is evaluated with in-situ measurements collected over the test site in Manitoba (Canada), which is a super-site in the Joint Experiment for Crop Assessment and Monitoring (JECAM) SAR inter-comparison experiment network. The validation results indicate a good correlation with acceptable error estimates (normalized root mean square error–nRMSE and mean absolute error–MAE) for both PAI and wet biomass for the MSVR approach and a better estimation with MSVR than single-target models (support vector regression–SVR). Furthermore, the correlation between PAI and wet biomass is assessed using the MSVR and SVR model. Contrary to the single output SVR, the correlation between biophysical parameters is adequately taken into account in MSVR based simultaneous inversion technique. Finally, the spatio-temporal maps for PAI and W at different growth stages indicate their variability with crop development over the test site.This research was supported in part by Shastri Indo-Candian Institute, New Delhi, India and the Spanish Ministry of Economy, Industry and Competitiveness, in part by the State Agency of Research (AEI), in part by the European Funds for Regional Development under project TEC2017-85244-C2-1-P

    Recent Advancement of Synthetic Aperture Radar (SAR) Systems and Their Applications to Crop Growth Monitoring

    Get PDF
    Synthetic aperture radars (SARs) propagate and measure the scattering of energy at microwave frequencies. These wavelengths are sensitive to the dielectric properties and structural characteristics of targets, and less affected by weather conditions than sensors that operate in optical wavelengths. Given these advantages, SARs are appealing for use in operational crop growth monitoring. Engineering advancements in SAR technologies, new processing algorithms, and the availability of open-access SAR data, have led to the recent acceleration in the uptake of this technology to map and monitor Earth systems. The exploitation of SAR is now demonstrated in a wide range of operational land applications, including the mapping and monitoring of agricultural ecosystems. This chapter provides an overview of—(1) recent advancements in SAR systems; (2) a summary of SAR information sources, followed by the applications in crop monitoring including crop classification, crop parameter estimation, and change detection; and (3) summary and perspectives for future application development

    Novel clustering schemes for full and compact polarimetric SAR data: An application for rice phenology characterization

    Get PDF
    Information on rice phenological stages from Synthetic Aperture Radar (SAR) images is of prime interest for in-season monitoring. Often, prior in-situ measurements of phenology are not available. In such situations, unsupervised clustering of SAR images might help in discriminating phenological stages of a crop throughout its growing period. Among the existing unsupervised clustering techniques using full-polarimetric (FP) SAR images, the eigenvalue-eigenvector based roll-invariant scattering-type parameter, and the scattering entropy parameter are widely used in the literature. In this study, we utilize a unique target scattering-type parameter, which jointly uses the Barakat degree of polarization and the elements of the polarimetric coherency matrix. Likewise, we also utilize an equivalent parameter proposed for compact-polarimetric (CP) SAR data. These scattering-type parameters are analogous to the Cloude-Pottier’s parameter for FP SAR data and the ellipticity parameter for CP SAR data. Besides this, we also introduce new clustering schemes for both FP and CP SAR data for segmenting diverse scattering mechanisms across the phenological stages of rice. In this study, we use the RADARSAT-2 FP and simulated CP SAR data acquired over the Indian test site of Vijayawada under the Joint Experiment for Crop Assessment and Monitoring (JECAM) initiative. The temporal analysis of the scattering-type parameters and the new clustering schemes help us to investigate detailed scattering characteristics from rice across its phenological stages.This work was supported in part by the Spanish Ministry of Science, Innovation and Universities, the State Agency of Research (AEI), and the European Funds for Regional Development (EFRD) under Project TEC 2017-85244-C 2-1-P. The work of Dipankar Mandal was supported by the Ministry of Human Resource Development, Government of India (New Delhi, India) towards his Ph.D. assistantship through grant no. RSPHD0210

    Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 SAR data

    Get PDF
    Sentinel-1 Synthetic Aperture Radar (SAR) data have provided an unprecedented opportunity for crop monitoring due to its high revisit frequency and wide spatial coverage. The dual-pol (VV-VH) Sentinel-1 SAR data are being utilized for the European Common Agricultural Policy (CAP) as well as for other national projects, which are providing Sentinel derived information to support crop monitoring networks. Among the Earth observation products identified for agriculture monitoring, indicators of vegetation status are deemed critical by end-user communities. In literature, several experiments usually utilize the backscatter intensities to characterize crops. In this study, we have jointly utilized the scattering information in terms of the degree of polarization and the eigenvalue spectrum to derive a new vegetation index from dual-pol (DpRVI) SAR data. We assess the utility of this index as an indicator of plant growth dynamics for canola, soybean, and wheat, over a test site in Canada. A temporal analysis of DpRVI with crop biophysical variables (viz., Plant Area Index (PAI), Vegetation Water Content (VWC), and dry biomass (DB)) at different phenological stages confirms its trend with plant growth dynamics. For each crop type, the DpRVI is compared with the cross and co-pol ratio (σVH0/σVV0) and dual-pol Radar Vegetation Index (RVI = 4σVH0/(σVV0 + σVH0)), Polarimetric Radar Vegetation Index (PRVI), and the Dual Polarization SAR Vegetation Index (DPSVI). Statistical analysis with biophysical variables shows that the DpRVI outperformed the other four vegetation indices, yielding significant correlations for all three crops. Correlations between DpRVI and biophysical variables are highest for canola, with coefficients of determination (R2) of 0.79 (PAI), 0.82 (VWC), and 0.75 (DB). DpRVI had a moderate correlation (R2≳ 0.6) with the biophysical parameters of wheat and soybean. Good retrieval accuracies of crop biophysical parameters are also observed for all three crops.This work was supported by the Spanish Ministry of Science, Innovation and Universities, the State Agency of Research (AEI) and the European Funds for Regional Development (EFRD) under Project TEC2017-85244-C2-1-P

    Satellite surface soil moisture from SMOS and Aquarius: Assessment for applications in agricultural landscapes

    Get PDF
    AbstractSatellite surface soil moisture has become more widely available in the past five years, with several missions designed specifically for soil moisture measurement now available, including the Soil Moisture and Ocean Salinity (SMOS) mission and the Soil Moisture Active/Passive (SMAP) mission. With a wealth of data now available, the challenge is to understand the skill and limitations of the data so they can be used routinely to support monitoring applications and to better understand environmental change. This paper examined two satellite surface soil moisture data sets from the SMOS and Aquarius missions against in situ networks in largely agricultural regions of Canada. The data from both sensors was compared to ground measurements on both an absolute and relative basis. Overall, the root mean squared errors for SMOS were less than 0.10m3m−3 at most sites, and less where the in situ soil moisture was measured at multiple sites within the radiometer footprint (sites in Saskatchewan, Manitoba and Ontario). At many sites, SMOS overestimates soil moisture shortly after rainfall events compared to the in situ data; however this was not consistent for each site and each time period. SMOS was found to underestimate drying events compared to the in situ data, however this observation was not consistent from site to site. The Aquarius soil moisture data showed higher root mean squared errors in areas where there were more frequent wetting and drying cycles. Overall, both data sets, and SMOS in particular, showed a stable and consistent pattern of capturing surface soil moisture over time

    Soil Moisture Retrieval with Airborne PALS Instrument over Agricultural Areas in SMAPVEX16

    Get PDF
    NASA's SMAP (Soil Moisture Active Passive) calibration and validation program revealed that the soil moisture products are experiencing difficulties in meeting the mission requirements in certain agricultural areas. Therefore, the mission organized airborne field experiments at two core validation sites to investigate these anomalies. The SMAP Validation Experiment 2016 included airborne observations with the PALS (Passive Active L-band Sensor) instrument and intensive ground sampling. The goal of the PALS measurements are to investigate the soil moisture retrieval algorithm formulation and parameterization under the varying (spatially and temporally) conditions of the agricultural domains and to obtain high resolution soil moisture maps within the SMAP pixels. In this paper the soil moisture retrieval using the PALS brightness temperature observations in SMAPVEX16 is presented
    • …
    corecore